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Semiclassical motion of a multiband Bloch particle in a time-dependent field: Optical visualization

S. Longhi, M. Lobino, M. Marangoni, R. Ramponi, and P. Laporta
Dipartimento di Fisica and Istituto di Fotonica e Nanotecnologie del CNR, Politecnico di Milano, Piazza L. da Vinci 32, 1-20133
Milano, Italy

E. Cianci and V. Foglietti
Istituto di Fotonica e Nanotecnologie del CNR, Sezione di Roma, Via Cineto Romano 42, 00156 Roma, Italy
(Received 28 June 2006; published 18 October 2006)

An optical visualization of the semiclassical dynamics of a multiband Bloch particle subjected to an external
time-dependent force is experimentally reported using an array of tunneling-coupled lithium-niobate optical
waveguides with a curved axis. It is shown that a Gaussian beam injected into the array breaks into wave
packets belonging to different bands of the array which propagate as semiclassical Bloch particles in a time-
dependent force simulated by the waveguide axis curvature. According to the semiclassical analysis and to
numerical simulations of the scalar beam propagation equation, the paths followed by the wave packets is
proven to depend on the initial momentum, which is controlled by varying the incidence angle of the Gaussian
beam. In particular, we study in detail, both theoretically and experimentally, the wave packet refocusing
dynamics which occurs in the presence of a semicycle sinusoidal force and reveal its deep difference with

respect to Bloch oscillations in a dc field.
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I. INTRODUCTION

The dynamics of a quantum particle in a periodic poten-
tial under the action of an external force, such as the motion
of electrons in crystals induced by an applied electric field,'
has provided since the pioneering studies by Bloch and
Zener*? a subject of major relevance in different physical
systems. The early quantum theory of electrical conductivity
in crystal lattices by Bloch and Zener led to the striking
prediction that a homogeneous static electric field induces an
oscillatory rather than uniform motion of the electrons,
known as Bloch oscillations (BO). From the theoretical point
of view, BO have been a matter of great controversy for
decades, mainly related to the rigorous proof of the existence
of a discrete ladder energy spectrum, that was settled only
recently (for a review see, e.g., Ref. 4). From the experimen-
tal side, BO have never been observed in natural crystals
because the scattering time of the electrons by the lattice
defects is much shorter than the Bloch period. The first ob-
servation of BO and related Wannier-Stark ladder energy
spectrum was possible using semiconductor superlattices,>%
where the larger spatial period leads to a much shorter Bloch
period (for a review on BO in semiconductor superlattices
see, e.g., Ref. 7 and references therein). In addition to semi-
conductor superlattices, more recently the BO motion and
the existence of Wannier-Stark ladders have been theoreti-
cally studied and experimentally observed in other physical
systems, including cold atoms and Bose-Einstein conden-
sates in optical lattices,3~!! optical waveguide arrays,'>! op-
tical superlattices, and related periodic optical structures.?0->’
Other phenomena closely related to BO dynamics have been
also studied and demonstrated in these systems. Among oth-
ers effects, we just mention interband coupling and Zener
tunneling induced by strong fields®!'7-?8-3! and dynamic lo-
calization in the presence of ac or mixed ac-dc fields.’>*

As compared to other physical and optical systems, be-
sides avoiding detrimental dephasing effects due to the high
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coherence of photons, optical waveguide arrays provide a
rather unique laboratory for a visual observation of the Bloch
motion in real (direct) space.17 In addition, different launch-
ing beam geometries can be employed for band excitation
control, allowing single-band'*'>!7 or multiband**~*7 excita-
tion of the array or even the selective excitation of a single
Bloch Floquet state.** The recent visualizations of optical
Bloch wave packet motion in these structures'*!>!7:19 have
considered the case of a constant transverse index gradient,
which simulates the effect of a dc field in the corresponding
quantum-mechanical problem, with single-band excitation at
the input plane. However, as shown in Refs. 42 and 48,
curved waveguides with a nonconstant curvature are suited
to study wave packet dynamics under the action of a generic
time-dependent force, whose strength is related to the local
waveguide axis curvature by a Newtonian equation of
motion.*’ For instance, we recently reported a direct experi-
mental demonstration of the basic dynamic localization con-
dition of electrons in a crystal subjected to an external ac
force, as originally predicted by Dunlap and Kenkre,’? by
measurements of the impulse response of sinusoidally curved
arrays under single band excitation.*> Waveguide arrays with
a suitably tailored axis bending thus offer the rather unique
possibility to visualize in real space the semiclassical motion
of Bloch wave packets in different bands under the action of
any desired nonconstant force, a possibility which is hardly
accessible in experiments based on condensed-matter (e.g.,
semiconductor superlattices) or other optical or matter-wave
systems. In this work we provide a detailed theoretical and
experimental study of multiband wave packet dynamics in
curved waveguide arrays which mimics the semiclassical
motion of a quantum particle in a periodic potential sub-
jected to a time-dependent field. In particular, we provide a
direct visualization in real space of the motion of a Bloch
particle in the semicycle of a sinusoidal force, tracing the
semiclassical paths of the Bloch particle in the two lowest-
order bands of the array and comparing the experimental
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results with the theoretical predictions. The dependence of
the semiclassical Bloch path on the initial transverse photon
momentum is investigated and compared to the dc force
case.

The paper is organized as follows. In Sec. II the basic
theoretical model describing the dynamics of an optical
Bloch wave packet in a curved waveguide array, including
multiband effects, is presented and applied to the array ge-
ometry used in our experiments. In Sec. III the experimental
results on multiband Bloch motion of light beams in a sinu-
soidally curved lithium-niobate waveguide array are pre-
sented, including a visualization of the semiclassical paths
for the two lowest-order bands of the array and their depen-
dence on initial momentum. Finally, in Sec. IV the main
conclusions are outlined.

II. DYNAMICS OF BLOCH WAVE PACKETS IN CURVED
WAVEGUIDE ARRAYS: THEORETICAL ANALYSIS

A. Basic model and multiband excitation geometry

We consider propagation of a monochromatic wave at
wavelength (in vacuum) A=27/k in a linear array of single-
mode tunneling-coupled optical waveguides, with equal
separation «a in the X direction, lying in the (X,Z) plane. The
axis of the waveguide array is assumed to be bent along the
propagation direction Z, with a paraxial bending profile X(z)
which is assumed to vary slowly over a distance of the order
of the waveguide spacing a. Assuming that the field is
strongly localized in the vertical Y direction, an effective
two-dimensional equation can be used to study field propa-
gation in the (X,Z) plane.*>4%47 In the paraxial and scalar
approximations, the wave equation reads (see, e.g., Refs. 42
and 49)

oy Ky

2 iz . ox? +VIX - Xo(2)]¢, (1)
where X=N/(2m)=1/k is the reduced wavelength, V(X)
=[n2-n*(X)1/(2n,) =n,~n(X), n(X) is the effective index
profile of the array in the transverse X direction, and n; is the
substrate refractive index. As noted in Ref. 49, with the for-
mal substitution Z—t, X—#, and n,—m, Eq. (1) is analo-
gous to the semiclassical Schrodinger equation, written in the
Kramers-Henneberger reference frame,>* for a one-
dimensional electron in the periodic potential V(X), sub-
jected to an external uniform and time-dependent electric
field. The oscillating term X,(Z), describing axis bending,
represents the quiver motion, in the laboratory frame, of a
classical electron subjected to the external field.>° Indeed, in
the waveguide reference frame:

x=X-X,(2), z=2, (2)
and after the gauge transformation:
N o ng [° 2
P(x,z) = P(x,z)exp| —i—Xo(D)x—i— | d&Xy(&) | (3)
X 2x70

(where the dot denotes the derivative with respect to z), Eq.
(1) yields
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FIG. 1. (Color online) (a) Effective index profile in one period,
and (b) corresponding band diagram of a waveguide array for pa-
rameter values which apply to our experiments: a=14 um, ng
=2.414, N\=1.44 pm. In (a), the refractive index is shown in one
period (Jx| <a/2) and the profile is approximated by the function
n(x)=ny+Anlerf((x+w)/D,)—erf((x—=w)/D,)]/[2 erf(w/D,)],
where An=0.0032 is the peak index change, D,=1 um is the dif-
fusion constant, and 2w=7 um is the channel width.

LI K7
ix gz 2n, ox* + V()¢ -qgE2)xe, “)

where we have set

q€(2) = - nX(2). (5)

In its present form Eq. (4) is the Schrodinger equation de-
scribing the dynamics of a charged particle, of mass n; and
charge ¢, in a periodic potential V[ V(x+a)=V(x)] under the
action of an applied time-dependent electric field £(z), whose
amplitude is proportional—according to Eq. (5)—to the local

curvature )?0 of the waveguide axis. Note that, in the optical
analogy, the temporal variable of the quantum problem is
mapped into the spatial propagation coordinate z, so that the
temporal wave packet evolution of the quantum problem is
visualized as paraxial propagation of light along the array.
Beam propagation in the straight array, i.e., in the
absence of the external £ field, is fully characterized
by the knowledge of its band structure. Indicating by
Ho=—(X%/2n,)#/ dx*+ V(x) the Hamiltonian of Eq. (4) in the
absence of the external £ field, the eigenfunctions ¢,(x, ) of
H, are given by the Bloch-Floquet states ¢, (x,k)
=u,(x, K)exp(irxx) with Hyd,(x, k)=E,(k)d,(x, k), where n
is the band index, —w/a<k<m/a, and E,(k) is the energy
dispersion relation for band n. The Bloch functions satisfy
the orthonormal relation I fwdxcﬁ (x,")p,(x,K)
=(¢h(x,k")| ¢,(x,x))=6,,0(k—«"). This implies for the pe-
riodic functions u,(x,x) the normalization condition
I ’f/az,zdx|u,1(x, K)|?=a/(2m) and, for its Fourier coefficients
0/(k,n) defined by the relation u,(x, K)
=27 _0(k,n)exp(2milx/a), the normalization condition
S . 6/(k,n)|*=1/(2). Figures 1(a) and 1(b) show the in-
dex profile and corresponding band diagram of a waveguide
array for parameter values which apply to the structure fab-
ricated for our experiments and described in the next section.
Owing to the completeness of ¢,(x, k), the field ¢(x,z) can
be expanded as a superposition of Bloch modes in the vari-
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ous bands, i.e., one can employ the crystal momentum rep-
resentation for the wave packet ¢(x,z)

la
drc,(k,2)u,(x, K)exp(ikx), (6)

—mla

Px,2) =2

where, in the absence of the external £ field, the coefficients
¢, evolve according to c,(k,z)=c,(k,0)exp[—iE,(x)z/X].
The values of the coefficients ¢, at the input plane z=0 of the
array depend on the excitation beam geometry. An interest-
ing feature of waveguide arrays, which makes them particu-
larly suited to study wave packet dynamics, is the feasibility
of the excitation geometry, which can lead to different and
controllable initial conditions.** For instance, a single Bloch-
Floquet mode for a given band can be excited using a trans-
verse excitation geometry, where a beam is coupled at a
grazing angle to the array from a region of a planar wave-
guide along its side,** whereas for broad beam incidence at
the input facet of the array a superposition of Bloch modes
around a given momentum k,, defined by the input beam
angle, is excited.***¢ In this case, multiple bands may be
simultaneously excited; in particular, for a non-normal inci-
dence at an angle corresponding to a transverse momentum
close to ky=m/a, the first two bands of the array may be
simultaneously excited with comparable amplitude.* In this
work we consider the latter excitation geometry, which al-
lows the creation of a wave packet formed by the superpo-
sition of Bloch modes belonging to different bands. For a
given incident beam profile ¢(x,0), the Bloch-wave spec-
trum c,(«,0) is given by

en(1,0)= | dxp,(x, k) p(x,0) (7)

—oo

and it can be related to the Fourier spectrum of the input
beam profile, @(k)=(2m) "2 dxp(x,0)exp(=ikx), by a
simple relation. In fact, let us define the Bloch-wave excita-
tion coefficients B(x,n) of the various bands, with —o <k
<o, as

B(k.n) =\2m (k - 2l/a,n) (8)

for —mla+2wlla<k<mla+2mlla (I=0,+1,+2,...). The
Bloch-wave excitation coefficients B(k,n) are continuous
functions of « and satisfy the condition X,|B(k,n)[*=1 for
any k. Thus one can easily show that (see also Ref. 46)

[

cy(k,0)= E B(k+27lla,n)d(k + 27lla). 9)

[=—

For a broad beam incident onto the array at a paraxial angle
a [Fig. 2(a)], the spectrum ¢(x) is narrow around k=&
= a/X, and therefore solely the Bloch modes with momen-
tum « = k are mostly excited. Figure 2(b) shows the numeri-
cally computed behavior of the Bloch-wave excitation coef-
ficients B(x,n) for the few low-order bands of the array
depicted in Fig. 1, together with the spectrum corresponding
to a typical Gaussian beam excitation used in our experi-
ments. Note that, for a beam incidence angle « close to the
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FIG. 2. (Color online) (a) Geometry for multiband array excita-
tion. A spatially broad beam with Gaussian intensity distribution is
injected into the input facet of the array at an angle «. The excited
Bloch-Floquet modes in the array have a transverse momentum
close to kg=a/X. (b) Behavior of Bloch-wave excitation coeffi-
cients |B(«,n)|> vs normalized transverse momentum xa/r for the
four lowest-order bands of the array of Fig. 1. The dotted curve in
the figure is the spectrum |(}_’;(K)|2 of a broad Gaussian beam with
radius beam spot size wy=50 um at an incidence angle a<<aj. (c)
Behavior of the interband coupling coefficients |X, »| and |X; 3| (d)
Behavior of refraction angle a,=(1/X)(dE,/d«k) vs incidence angle
a, normalized to the Bragg angle ap=mA/a=2.95° for the two
lowest order bands of the array.

Bragg angle az=mAX/a, corresponding to «y=1/a, the two
lowest-order bands n=1 and n=2 are almost equally excited,
whereas the contributions of higher-order bands are negli-
gible.
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B. Multiband wave packet dynamics in the external field

The dynamics of a Bloch wave packet in the presence of
an external field has been widely discussed in the literature,
especially in the presence of a dc field in connection with the
well-known Bloch oscillation motion (see, for instance, Refs.
51 and 52). Here we briefly present some theoretical and
general aspects of the dynamics which are of relevance for
the understanding of the experimental results reported in the
next section. In the crystal momentum representation [Eq.
(6)], in the presence of the external £ field the evolution
equations for the coefficients c,(«,z) read’!

1615(Z)— -q&(2) 2 X, (k)c; (10)

[=—00

g
X2t E (k)c, -
az

where we have set

ou ,(x K)

X,(k) = —f x u, (x, ) ——— (11)

The diagonal elements X, , in Eq. (10) account for the en-
ergy band correction induced by the external field, whereas
the off-diagonal elements X, ;(n # [) are responsible for inter-
band transitions (Zener tunneling). For a symmetric index
profile of the waveguide, such as that considered in our ex-
periments [see Fig. 1(a)], the periodic part of Bloch functions
u,(x,k) can be chosen such that X, ,=0, whereas for n
#1, X,,; is purely imaginary and given by (see, for instance,
Ref. 53)

f dx u:(x, K)(dVIdx)u/x, k)
4mx*Jo

[E,(k) - E()]

The numerically computed behavior of the coupling coeffi-
cients X, and X, ; for the lowest-order bands is shown in
Fig. 2(c). We note that Zener tunneling between bands n and
I may be neglected for field amplitudes such that |¢€X,, | is
smaller than the gap separation of the two bands, a require-
ment which is well-satisfied in our experimental conditions
where solely the first two bands are populated and the band
gaps are relatively wide. Under these assumptions, Eq. (10)
is decoupled and can be solved in a closed form, yielding for
each band:

(12)

nl=
2ang

cn(K,Z)=gn(K—lf d§q5(§)>e>&p[—i¢n(f<,z)], (13)
0

X

where the spectrum g,(x) =c,(«,0) is determined by the in-
put beam profile according to Eq. (9) and

¢n(K,z)=lf den(K—lf dpqé’(p)). (14)
xJo xJ¢

Note that, according to the “acceleration theorem,! the ini-
tial excitation |g,(x)|> moves along the Brillouin zone pre-
serving its shape, namely |c,(k,z)[*=|g, 2, where
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K(z) = ;f d§q&(§). (15)

Note also that the motion of |c,|? in the k space is uniform
solely for a constant field, i.e., in the case where the curva-
ture of the waveguides is constant along the propagation di-
rection. To understand the corresponding motion of the wave
packet in the real space, we decompose the initial field as a
superposition of wave packets belonging to different bands,
ie, we write (x,2)=2,¢,(x,2), with  i,(x,2)
=[dkc,(k,z)u,(x, k)exp(ixx). From Eq. (13), the evolution
of each wave packet is ruled by the equation

wn(x9z) = f dK gn[K - E(Z)]un(xa K)exp[in - iQDn(K7Z)]'
(16)

For broad beam excitation at an incidence angle «, as dis-
cussed at the end of Sec. I A, the spectrum g(«) is narrow
around k-~ ky=a/X. Assuming that the variation of u,(x, k)
with « is much smaller than that of g,(k), after setting Ax
=k—K(z)— K one can write

h(x,2) = 1, (x, (k) F (x, 2)expl i k)x — i, ((k),2) ], (17)

where the mean value of crystal momentum (x) and the en-
velope F are given by

(k)= Ko+ K(z) =Ko+~ fd§q<‘3(§) (18)
X

F,(x,z) = f dAkg, (ko + Ak)expliAkx — i@, (k) + Ak,z)

+i@,((),2)]. (19)

If we expand the phase term of Eq. (19) in series of Ax and
limit the expansion up to first order, we obtain

F,(x,2) =

() =+ f gL
x7J0

Note that, according to Egs. (17) and (20), apart from a phase
term the wave packet ,(x,z) is given by the product of the
Bloch function ¢, with crystal momentum (k)= ky+k(z)
spanning the Brillouin zone and an envelope F which, at
leading order, propagates undistorted following the trajectory
x,(z) given by Eq. (21). Note that the wave packet trajectory
can be obtained by solving the following semiclassical

Fn[x - xn(Z),O], (20)

where

21

equations,! which directly follow from Egs. (18) and (21):
d{k &z
dk) _ 8@ 22)
dz X
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dx, "
b~y on (&), (23)

with the initial conditions (x)(0) =k, and x,(0)=0. Owing to
the different dispersion curves of the various bands, the tra-
jectories of the different wave packets i,(x,z) are distinct,
which results in breakup of the overall wave packet (see,
e.g., Ref. 52). In the absence of the external field, beam
breakup corresponds to different refraction angles associated
with the various bands of the array, i.e., different values of
(9E,/ 07K)K0, which depend on the incident angle as experi-
mentally demonstrated in Refs. 44, 46, and 47. Figure 2(d)
shows the numerically computed refraction angles «,
=(1/X)(dE,/dk) of the wave packets for different bands vs
the incidence angle « for the straight array. Note the charac-
teristic periodicity of refraction angles vs « and the existence
of negative refraction.

C. Semiclassical motion and beam refocusing in a constant
force and in a semicycle sinusoidal force

The paths followed by the wave packets ¢, excited at the
input plane of the array, are ruled by the semiclassical equa-
tions (22) and (23) and are thus determined by both band
dispersion curves and external force. Under certain condi-
tions the wave packets, after initial breakup due to different
refraction angles, may refocus at the same plane or may even
reconstruct their initial shape, apart from a global phase that
depends on band order. Since refocusing at a plane z simply
implies x,(z)=x,(0)=0 for each wave packet and initial «
value, the condition for full wave reconstruction in each
band is more stringent and, neglecting interband interactions
(Zener tunneling), it requires that K(z) be an integer multiple
of 27/a [Eq. (15)] and ¢,(k,z) [Eq. (14)] be independent of
k. These conditions, which follow from Egs. (13)-(15), are
rigorously met for a dc field £=¢&, for which a reconstruc-
tion of the wave packets ¢, for the various bands is periodi-
cally attained at distances multiples of the Bloch period zp
=27X/(gEya) (Bloch oscillations). Such a reconstruction is
related to the existence of a Wannier-Stark ladder for the
energy spectrum of the Hamiltonian Hy—¢g&yx in the single-
band approximation.* For single band excitation, such peri-
odic motion has been previously visualized in waveguide
arrays with a constant transverse index gradient.'%!>17 In
case of multiband excitation and neglecting Zener tunneling,
for a constant force the initial wave packet breaks up and the
paths of the different band wave packets ¢, in the real space
follow the corresponding band profile in the reciprocal space,
namely from Egs. (22) and (23) one easily obtains

52 = ——{En(o + gE0X) ~ Exio)]  (24)
(150
and

(K) = Ky + qEyz/X. (25)

After one Bloch period, i.e., at z=zp, the wave packets ¢,
thus refocus at the same initial position. As briefly reviewed
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in the Appendix, the refocusing for a dc force actually cor-
responds to exact field reconstruction for each band wave
packet (in the limit of negligible Zener tunneling).

A second important case of wave packet refocusing is the
multiband motion of a Bloch particle in a sinusoidal ac field,
which is obtained in our optical system using a periodic
waveguide curvature X,(z)=A sin(2mwz/A), leading to the
time-dependent force [see Eq. (5)]

4mn A  [2mz
A s )

q€(z) = (26)
where A and A are the amplitude and period of axis bending,
respectively. The corresponding motion in the reciprocal
space of the mean value of wave packet momentum (x) is
thus [see Eq. (18)]

<k>=K0+£|:]—COS(%):|, (27)

where we have set

47n,aA

r
NA

(28)

We note that the motion of a Bloch particle in a sinusoidal ac
field has been widely studied in the context of dynamic
localization, 2333638 3 phenomenon of periodic self-imaging
of the wave packet, which follows the ac field and which is
analogous to BO. For a sinusoidal ac field, periodic field
reconstruction in a given band strictly requires a band profile
of sinusoidal shape,?® and therefore it is only approximate;
this point is reviewed for the sake of clearness in the Appen-
dix. The condition for dynamic localization in a sinusoidal ac
field is*? J(I')=0, which has been experimentally verified in
our recent work by studying the impulse response of sinusoi-
dally curved arrays.*> Here we aim to study the semiclassical
motion of a broad beam under multiband excitation condi-
tions and intend to visualize the Bloch motion in one semi-
cycle of the sinusoidal force. From the point of view of the
center-of-mass wave packet motion, the semicycle time-
dependent force bears a close connection to BO because,
after propagation for a half period (i.e., for z=A/2), the
wave packets excited in the different bands refocus at the
same position whenever the dynamic localization condition
Jo(I')=0 is satisfied. In fact, by approximating the band pro-
file E, k) with a sinusoidal curve, E,(k)=E,(0)+A4,[1
—cos(ka)], from Eq. (21) one has

x,(z) =— al, Im{ exp[—i(kpa +T)]
Y

Xf‘dgexp[ilﬁ cos(277§/A)]}
0
A J (T AN J(T
- o0l R ol )Zsin(K0a+F)+—a N —l( )
X N oz !

X{sin[kga + ' = (1 = 1)7/2 = 2mzl/A]
—sin[kga +I' = (1= 1)7/2]}. (29)
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Hence for z=A/2 and when the dynamic localization condi-
tion Jy(I')=0 is satisfied, one has x,(A/2)=x,(0)=0. It
should be noted that beam path convergence at z=A/2 is
independent of both the initial momentum « (i.e., incidence
angle) and band order n provided that the approximation of a
sinusoidal band profile is valid. Such an approximation is
reasonable for the first two bands of the array shown in Fig.
1, which are the ones excited in our experiments. In practice,
as it will be shown in both simulations and experimental
results discussed in the next section, the incident beam first
breaks up into two wave packets, belonging to the two first
bands of the array, which follow different trajectories accord-
ing to Eq. (21) but finally they recombine and return to its
initial position. This refocusing behavior, though being simi-
lar to the one previously discussed for BO in a dc field, does
not correspond to wave packet reconstruction, as shown in
the Appendix. This remarkable difference as compared to BO
in a dc field is related to the fact that in the semicycle sinu-
soidal field the final momentum (k) does not return to its
initial value k, [compare Egs. (25) and (27)]. Therefore even
within the single-band and sinusoidal-band-shape approxi-
mations, exact field reconstruction is not achieved in the
semicycle sinusoidal field. A simple and experimentally ac-
cessible demonstration of such a different behavior is pro-
vided by a measure of wave packet displacement Ax=|x,
-x;| vs Ky (i.e., incidence angle) in the middle plane between
the input and focusing planes. For a dc field, at z=z5/2 the
crystal momentum () spans half of the full Brillouin zone
[from the initial value « to the final value ,+ 7/a, see Eq.
(25)], and the corresponding beam displacement is obtained
from Eq. (24) and reads

1
Ax= ?|E2(K0 +m/a) — E (kg + 7la) + E\ (k) — E»(kp)].
qco

(30)

Note that Ax turns out to be a symmetric function around
Ko=1/a, with a maximum displacement at ky=m/a, i.e., for
an incidence angle a=aj. For instance, if we approximate
the first two bands of the array by sinusoidal curves,
Ei(k)=FE;5(0)+A; [ 1-cos(ka)] with A;>0 and A,<0,
one has

2azp
I

Ax=

|A; — Ay |cos(koa)|. (31)

Conversely, for the sinusoidal field, the crystal momentum
(k) at z=A/4 spans less than half of the full Brillouin zone
[from the initial value  to the final value xy+1'/a with T’
=2.405, corresponding to the first zero of the Bessel J;, func-
tion; see Eq. (27)]. From Eq. (29), the beam displacement
under the approximation of sinusoidal band profiles can be
then calculated yielding:

2aAo
A
with o=2"_J5,,.1(I)/(2n+1)=0.589. In deriving Eq. (32),

we approximated as in Eq. (31) the profiles of the first two
bands by sinusoidal curves. As opposed to Eq. (31), for the

Ax= |A; — Ay||cos(kga +T)| (32)
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FIG. 3. Schematic of the experimental setup. Obj: microscope
objective; BS: beam splitter; M: mirror; CL: cylindrical lens; ECD:
external cavity diode; and WA: waveguide array.

sinusoidal field the beam displacement Ax is not symmetric
around ky=1/a, i.e., around the Bragg angle ap, which is
just related to the fact that in the reciprocal space the crystal
momentum spans less than half of the Brillouin zone. In the
experiment discussed in the next section this feature will be
evidenced by the asymmetry around the Bragg angle ap of
the measured beam displacement Ax vs incidence angle «
(see Fig. 8 discussed in Sec. III B).

III. EXPERIMENTAL RESULTS

To experimentally study the semiclassical Bloch motion
under the action of a time-dependent field, we manufactured
a set of waveguide arrays in z-cut lithium niobate substrates
using the annealing proton exchange (APE) technique.’
Each array is composed by 80 waveguides with 2w=7 pum
channel width and a=14 um spacing, which are single-mode
at the working wavelength of A=1.44 um. The waveguide
arrays were patterned by deposing a titanium mask on a
lithium niobate substrate, and they were fabricated by
57 min proton exchange at 247 °C in a melt of benzoic acid
with 1% lithium benzoate and 4 h 55 min annealing at
350 °C in air. The sample is L=28-mm long and comprises a
straight array, which allows us to experimentally characterize
its band structure in the absence of external field, and a
curved array in which the axis bending is shaped according
to Xy(z)=A sin2wZ/A), with A=164 um and A=56 mm.
The curved array thus simulates the action of a half-cycle of
an ac sinusoidal field, and the design parameters of the array
are chosen such that the dynamic localization condition T’
=2.405 is attained at the probing wavelength A=1.44 um
[see Eq. (28)]. Figure 3 shows the experimental setup used
for coupling light into the arrays at different incident angles
and for monitoring and recording the intensity patterns at the
output facet. The arrays were illuminated by an external cav-
ity diode (ECD) laser tuned at A=1.44 pm, whose output is
collimated and superimposed to an He-Ne laser beam at A\
=543 nm used for alignment purposes. The radiation is
coupled into the waveguides through a cylindrical telescope
formed by a cylindrical lens of 140 mm focal length and a
spherical objective with 10 mm focal length, producing an
elliptical beam waist diameter of 100 um in the horizontal x
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direction and 8 um in the vertical y direction. The telescope
is mounted on a translational-rotational stage which permits
one to change the angle of incidence with an accuracy of
0.01° and to change the beam incident point by translating
the telescope in the x direction with a 1 um accuracy. The
polarization of the incident beam was set orthogonal to the
plane of the waveguides in order to couple the TM modes
supported by the APE waveguides. The intensity profile at
the output facet of the array is then imaged and recorded on
a vidicon camera by a 10X collecting objective. In order to
visualize the Bloch motion along the propagation direction,
three other identical curved arrays with the same design pa-
rameters were fabricated and cut at different lengths L=7,
14, and 21 mm, which allow us to monitor the light intensity
distribution at planes A/8, A/4, and 3A/8, respectively, of
the semicycle sinusoidal force.

A. Multiband beam dynamics in the straight array

In order to check the quality of the fabricated sample and
to demonstrate multiband excitation and beam breakup due
to different refraction angles, we first studied beam propaga-
tion in the straight array. We note that similar measurements
demonstrating multiband effects were previously reported for
a straight array of ridge waveguides etched onto an AlGaAs
substrate,** however, the semiclassical Bloch motion in
curved arrays, simulating the action of the time-dependent
force, was not investigated. Figure 4(a) shows, as an ex-
ample, the measured transverse intensity profile at the output
plane of the L=28-mm-long array when it is illuminated, at
the input plane, by a Gaussian beam (radius spot size wy
=50 wm) tilted at an angle a=3.51°. The position x=0 cor-
responds, in the figure, to the input waveguide at which the
Gaussian beam was centered. Figure 4(b) shows the corre-
sponding theoretical prediction based on a direct numerical
analysis of Eq. (4). The measure clearly indicates beam
breakup due to the simultaneous excitation of the first two
bands of the array, according to Fig. 2(b). The beam ¢,
corresponding to the first band, has a negative refraction
angle, and hence at the output it is shifted on the left side,
whereas the beam i, corresponding to the excitation of band
2, has a positive refraction angle and at the output it is
shifted at positive values of x. The refraction angles corre-
sponding to the measure of Fig. 4(a) turn out to be in very
good agreement with those obtained from band analysis [Fig.
2(d)]. The two images in Fig. 4(a) show two particulars of
the measured transverse light spots, taken in correspondence
of the centers of the two beams ¢, and i, together with the
position of the waveguides in the array. Note that, while for
beam ¢, the light is mostly confined in the waveguides, for
the second beam ), the light is mainly confined in the low-
index regions, i.e., outside the waveguides. This behavior
reflects the shapes of the Bloch-Floquet modes of the first
two bands of the array, which are depicted in Fig. 4(c): as the
Bloch modes in band 1 confine the field in the high-index
region of the array, for the Bloch modes belonging to band 2
the opposite behavior occurs. Figure 5 shows, for the straight
array, a sequence of recorded output intensity distributions as
a function of the input beam angle «a. Excitation of the two
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FIG. 4. (Color online) (a) Horizontal cross section of measured
light intensity profile at the output plane of the L=28-mm-long
straight array illuminated by a wy=50 wm-spot-size Gaussian beam
at an incidence angle @=3.51° (a/ap=1.2). The two insets show
particulars of the two-dimensional transverse images recorded on
the camera taken in correspondence of the centers of the two split-
ted beams belonging to the first two bands of the array. The position
of the channel waveguides with respect to the light spots are also
schematically depicted at the bottom of each image. (b) Intensity
field distribution at the output plane of the array as predicted by a
numerical analysis of Eq. (4). The inset shows the wave packet
breakup dynamics along the propagation distance (top view) as ob-
tained by the numerical simulations. Note that, in addition to bands
1 and 2, a weak excitation of band 4 is also visible. (¢) Numerically
computed intensity profiles of Bloch-Floquet modes at x=0.8
X ar/a for the first two bands of the array. The dotted curve shows,
for comparison, the refractive index profile in one period.

bands is clearly visible, with an intensity of the beam belong-
ing to band 2 which increases as the incident angle is in-
creased and becomes dominant as the Bragg angle aj is
crossed, in agreement with the theoretical analysis shown in
Fig. 2(b). The transverse lateral shifts of the splitted wave
packets also turn out to be in good quantitative agreement
with the numerically computed refraction angles shown in
Fig. 2(d).

B. Bloch motion in the semicycle curved array

A series of detailed measurements on beam dynamics in
the semicycle curved array vs the incidence angle «, i.e.,
initial wave packet momentum «k, have been performed and
compared to the theoretical predictions based on the semi-
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FIG. 5. Measured light intensity distributions at the output plane
of the 28-mm-long straight array vs incidence angle. The array is
illuminated by a wy=50 um-spot-size Gaussian beam. The vertical
dashed line corresponds to beam incidence at the Bragg angle a
=ap=2.95°.

classical results of Sec. II C and on direct numerical simula-
tions of Eq. (4). For a given incidence angle close to the
Bragg angle, the input Gaussian beam breaks up mainly into
two wave packets of comparable amplitude, belonging to the
first two bands of the array, as for the straight array case
discussed in Sec. III A. However, in the curved array the
applied field changes the momentum in the reciprocal space
according to Eq. (27), and correspondingly the center of
mass of the two beams follow again two distinct but curved
trajectories that are obtained by solving Eq. (23). These tra-
jectories strongly depend on the initial beam momentum «.
For instance, if the dispersion curves of the two bands are
approximated by sinusoidal curves, the beam paths are given
by Eq. (29). The dependence of the beam trajectories on the
initial momentum is demonstrated in Fig. 6, where the beam
evolution obtained by numerical simulations of Eq. (4) and
the corresponding measured transverse intensity light distri-
butions at the five plane z=0, z=7 mm, z=14 mm, z
=21 mm, and z=28 mm are shown for two different values
of the incidence angle. For the sake of readability, the mea-
sured light intensity distributions are represented in the
waveguide reference frame x=X-X,(z), where the
waveguides appear to be straight. Note that the beams be-
longing to the first two bands of the array clearly follow
different paths for the two incidence angles, however, they
refocus at the output plane and recombine in a single beam
according to the semiclassical analysis (see Sec. I C): in
fact, for I'=2.405 and approximating the band dispersion
profile by a sinusoidal curve, according to Eq. (29) one has
x,(A/2)=0 independently of the incidence angle. Note also
that Zener tunneling of the two wave packets, which would
correspond to beam breakup at the turning points of the
beam trajectory where the wave packet momentum reaches
the minimum of band-gap separation, is negligible. This re-
sult is in good agreement with energy band and Zener coef-
ficient calculations shown in Fig. 2: in fact, for the design
parameters of the curved array the maximum amplitude of
the applied force during the semicycle is 47°nA/A?
=442 m~! [see Eq. (26)], and therefore from Fig. 2(c) we

PHYSICAL REVIEW B 74, 155116 (2006)

RLLLLLLE

Propagation distance z [mm]

10 0 10 20 30 -10 0 10 20

Waveguide number

FIG. 6. Bloch wave-packet dynamics in a semicycle sinusoidal
field for two different incidence angles. (a) a/ap=1.2, and (b)
a/ap=0.8. The right images show the measured transverse light
distribution at different propagation lengths [from bottom to the top:
z=0 (input beam), z=7 mm, z=14 mm, z=21 mm, and z=28 mm
(output beam)]. The left plots show the detailed beam dynamics as
predicted by a direct numerical analysis of Eq. (4). For the sake of
readability, both theoretical and experimental data are represented
in the waveguide reference frame x=X-Xy(Z) and z=Z.

can estimate |gEX,,|=141X107 and [¢€X,3/=6.23
X 1073, which should be compared with the band-gap sepa-
ration E,=1.84 X 107 and E, =7.27 X 10~* between the cor-
responding bands. Since E,> |gEX|, Zener tunneling is neg-
ligible from band 1 to band 2, and from band 2 to band 3. In
the numerical simulations of Fig. 6 excitation of small-
amplitude wave packets belonging to higher-order bands is
also visible, however, these wave packets tunnel into higher-
order bands and are not visible in our experimental measure-
ments.

The independence of beam refocusing of incidence angle
at the output plane of the semicycle array is clearly demon-
strated in Fig. 7, where a sequence of recorded output inten-
sity distributions are shown for a few values of the input
beam angle a. Note that, contrary to the straight array mea-
surements (Fig. 5) where beam breakup was clearly visible at
the output plane at any incidence angle a # ap, in the present
case the refocusing of the two beams belonging to the first
two bands of the array is attained at the output plane for any
incidence angle. Beam refocusing dynamics and recombina-
tion at the output plane of the semicycle curved array as
shown in Fig. 6 closely resembles the dynamics of a two-
band Bloch oscillator in one Bloch period: the initial wave
packet first breaks up into two wave packets belonging to the
first two bands of the array, which follow different paths but
finally recombine after one Bloch period zz. However, we
stress that, as in the dc field case a field reconstruction of
each wave packet occurs after one Bloch period, this is not
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FIG. 7. Same as Fig. 5, but for the semicycle curved array.

the case of the semicycle sinusoidal field, as shown in Sec.
II C and in the Appendix. In fact, for the semicycle sinu-
soidal field the final mean-value (k) of wave packet momen-
tum does not return to its initial value «, and, according to
Eq. (13), wave packets reconstruction in each band is not
achieved, despite the wave packets refocus at the same posi-
tion x,=0 at z=A/2. As shown in Sec. II C, the failure of
wave packet momentum return can be visualized at best by
measuring the lateral shift Ax=|x,(A/4)—x,(A/4)| of the
two wave packets at the middle plane between input (z=0)
and refocusing (z=A/2) planes. In fact, as for a Bloch oscil-
lator in a dc field such a lateral shift turns out to be a sym-
metric function of incidence angle « around the Bragg angle
ap [see Egs. (30) and (31)], for the semicycle sinusoidal field
the symmetry is broken due to nonreturn of the wave packet
momentum [see Eq. (32)]. We experimentally demonstrated
the asymmetry of the lateral shift Ax by measuring the output
light distribution vs the incidence angle in the sample cut at
z=A/4=14 mm. The experimental results are shown in Fig.
8(a) and compared to the theoretical predictions based on the
semiclassical analysis [Fig. 8(b)]. Note that the behavior of
measured lateral shift Ax of the two beams belonging to the
two bands of the array is in good agreement with the theo-
retical calculation.

IV. CONCLUSIONS

In this work we studied both theoretically and experimen-
tally the semiclassical motion of a Bloch particle subjected to
an external time-dependent force and provided a direct visu-
alization of the wave packet dynamics by using an array of
curved optical waveguides, in which the waveguide curva-
ture is tailored to simulate the action of a semicycle sinu-
soidal force. In particular, we considered an operational re-
gime where the first two energy bands are simultaneously
excited but Zener tunneling is negligible. Beam breakup due
to multiband excitation and beam refocusing were observed
in agreement with the semiclassical analysis. We also pre-
sented a detailed analysis of beam path dependence on initial
momentum and demonstrated the distinct features of beam
refocusing observed in the semicycle time-dependent field as
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FIG. 8. (Color online) (a) Measured intensity light distributions
at the exit of the quarter-cycle curved array (z=14 mm) for a few
values of incidence angle « normalized to the Bragg angle ap. The
input field is a Gaussian beam with radius spot size wy=50 um.
The dashed curves are the beam center of mass positions predicted
by the semiclassical analysis. (b) Transverse beam shift (in units of
waveguide separation) vs incidence angle for the wave packets in
the first two bands of the array as predicted by a numerical integra-
tion of Egs. (22) and (23) (solid curves) and by assuming a sinu-
soidal shape for the energy bands [dashed curves; see Eq. (32)]. For
band 1, the solid and dashed curves are almost overlapped.

compared to the usual Bloch oscillations induced by a dc
force.
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APPENDIX

In this Appendix we briefly review the conditions for
wave packet reconstruction in the single-band approxima-
tion. For a dc field £(z) =&, wave reconstruction is achieved
at propagation distances multiple of the Bloch period zz
=27/ (ag&). In fact, at z=z5 from Eqgs. (14) and (15) one
has k=2m/a and ¢,(k,z25)=23E,/\, where E,
=(al2m)[ fﬁf,adKE,,(K) is the dc term in the Fourier expansion
of the energy dispersion curve E,(x). Therefore from Eq.

(13) it follows that c,(k,zg)=c,(k,0)exp[—izzE,/\] and
hence ¢,(x,25) = ,(x,0)exp[—izsE,/\].
For an ac field, the problem of field reconstruction is more

involved and related to dynamic localization (for more de-
tails we refer to Refs. 32, 36, 38, and 39). For an ac field of
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period A, at z=A one has k=0 [see Eq. (15)], whereas the
phase ¢,(k,A) can be calculated from Eq. (14) by writing
the energy dispersion curve E,(x), which is periodic in
with period 27/a, as a Fourier series E,(k)=2,€ exp(ika).
One obtains

1 < A
@.(k,A) == 2 € explilka] f déexplily(é)], (Al)
X = 0

where we have set

13
ny="2 f dpq€(p). (A2)

xJo

In the single-band approximation, the condition for wave re-
construction is that ¢,(«,A) be independent of «. From Egq.
(A1) it follows that, for an ac field, wave reconstruction is
attained provided that

A
f d explilv(§)]=0 (A3)

0

for any /I=+1,+2,.... We note that the condition expressed
by Eq. (A3) for dynamic localization under the single-band
approximation was previously derived in Ref. 38 using a
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Wannier function basis for the wave packet. As shown in
Refs. 38 and 39, Eq. (A3) can be simultaneously met only
for ac fields that are discontinuous at all changes of sign.
However, if the band curve E,(k) has a sinusoidal shape, i.e.,
the Fourier coefficients € vanish for |/|=2, dynamic local-
ization simply requires

A
f dg expliy(§)]=0. (A4)

0

For example, in a sinusoidal ac field, £(z)=E&, sin(2mz/A),
Eq. (1) leads to the well-known condition Jo(I')=0 with I"
=alAg&y/\, as originally derived by Dunlap and Kenkre.??
We finally note that beam refocusing in a semicycle of a
sinusoidal field, discussed in Sec. II C and observed in Figs.
6 and 7, does not correspond to field reconstruction for each
band wave packet. In fact, at z=A/2 one can show, assuming
a sinusoidal band shape and after some straightforward cal-
culations, that ¢,(x,A/2) is independent of « as for the dc
field case, however, K(A/2)=2I"/a does not vanish nor is it
an integer multiple of 27/a, as for the dc case. This means,
according to Eq. (13), that at z=A/2 the Bloch wave spec-
trum is shifted from its initial distribution and field recon-
struction is not achieved.
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